Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Evaluation of detector material and radiation source position on Compton camera’s ability for multitracer imaging

      Uche, Chibueze Zimuzo; Round, W. Howell; Cree, Michael J.
      DOI
       10.1007/s13246-012-0150-4
      Find in your library  
      Citation
      Export citation
      Uche, C. Z., Round, W. H., & Cree, M. J. (2012). Evaluation of detector material and radiation source position on Compton camera’s ability for multitracer imaging. Australasian Physical & Engineering Sciences in Medicine, 35(3), 357-364.
      Permanent Research Commons link: https://hdl.handle.net/10289/6889
      Abstract
      We present a study on the effects of detector material, radionuclide source and source position on the Compton camera aimed at realistic characterization of the camera's performance in multitracer imaging as it relates to brain imaging. The GEANT4 Monte Carlo simulation software was used to model the physics of radiation transport and interactions with matter. Silicon (Si) and germanium (Ge) detectors were evaluated for the scatterer, and cadmium zinc telluride (CZT) and cerium-doped lanthanum bromide (LaBr3:Ce) were considered for the absorber. Image quality analyses suggest that the use of Si as the scatterer and CZT as the absorber would be preferred. Nevertheless, two simulated Compton camera models (Si/CZT and Si/LaBr3:Ce Compton cameras) that are considered in this study demonstrated good capabilities for multitracer imaging in that four radiotracers within the nuclear medicine energy range are clearly visualized by the cameras. It is found however that beyond a range difference of about 2 cm for In-113m and F-18 radiotracers in a brain phantom, there may be a need to rotate the Compton camera for efficient brain imaging.
      Date
      2012
      Type
      Journal Article
      Publisher
      Springer
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement