Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Application of flow cytometry for examining phytoplankton succession in two eutrophic lakes

      Dennis, Marie; Landman, Michael J.; Wood, Susanna A.; Hamilton, David P.
      DOI
       10.2166/wst.2011.099
      Link
       www.iwaponline.com
      Find in your library  
      Citation
      Export citation
      Dennis, M. A., Landman, M., Wood, S. A., & Hamilton, D. (2011). Application of flow cytometry for examining phytoplankton succession in two eutrophic lakes. Water Science & Technology, 64(4), 999 - 1008.
      Permanent Research Commons link: https://hdl.handle.net/10289/7004
      Abstract
      Flow cytometry has potential as a rapid assessment technique to evaluate phytoplankton biomass and species composition. It facilitates for multi-parameter analysis of individual cells on the basis of light scattering effects induced from cellular constituents, as well as auto-fluorescence. Fluorescence emission characteristics may be especially useful in classifying cyanobacteria as they contain phycoerythrin which emits light predominantly in the 550–600 nm waveband, chlorophyll-a (650–700 nm emission) and allophycocyanin (660 nm emission). The objective of our study was to assess the utility of flow cytometry for the rapid identification and sorting of freshwater algae and cyanobacteria species. Using a selection of laboratory-cultured freshwater algae and cyanobacteria species, this study demonstrated unique light scatter and fluorescent characteristics for each species examined, allowing for rapid species identification and sorting of mixed populations of laboratory cultures and samples from two lakes in the Rotorua region (New Zealand). Analysis of lake water samples collected over seven months demonstrated changes in abundance and community composition of phytoplankton in the two lakes and demonstrates that flow cytometry may be a useful technique for examining seasonal changes in phytoplankton composition.
      Date
      2011
      Type
      Journal Article
      Publisher
      IWA Publishing
      Collections
      • Science and Engineering Papers [3117]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement