Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Area targeting and storage temperature selection for heat recovery loops

      Walmsley, Michael R.W.; Walmsley, Timothy Gordon; Atkins, Martin John; Neale, James R.
      Thumbnail
      Files
      Area Targeting and Storage Temperature Selection for.pdf
      742.3Kb
      DOI
       10.3303/CET1229204
      Find in your library  
      Citation
      Export citation
      Walmsley, M.R.W., Walmsley, T., Atkins, M.J. & Neale, J.R. (2012). Chemical Engineering Transactions, 29, pp. 1219-1224.
      Permanent Research Commons link: https://hdl.handle.net/10289/7058
      Abstract
      Inter-plant heat integration across a large site can be achieved using a Heat Recovery Loop (HRL). In this paper the relationship between HRL storage temperatures, heating and cooling utility savings (heat recovery) and total HRL exchanger area is investigated. A methodology for designing a HRL based on a ΔTmin approach is compared to three global optimisation approaches where heat exchangers are constrained to have either the same Number of Heat Transfer Units (NTU), Log-Mean Temperature Difference (LMTD) or no constraints (actual global optimum). Analysis is performed using time averaged flow rate and temperature data. Attention is given to understanding the actual temperature driving force of the HRL heat exchangers compared to the apparent driving force as indicated by the composite curves. The cold storage temperature is also varied to minimise the total heat exchanger area. Results for the same heat recovery level show that the ΔTmin approach is effective at minimising total area to within 5 % of the unconstrained global optimisation approach. The study also demonstrates the efficiency of the ΔT min approach to HRL design compared to the other methods which require considerable computational resources.
      Date
      2012
      Type
      Journal Article
      Publisher
      AIDIC Servizi S.r.l.
      Rights
      Copyright © 2012, AIDIC Servizi S.r.l. Used with permission.
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

      Downloads, last 12 months
      24
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement