Show simple item record  

dc.contributor.authorMcConnell, N. R.
dc.contributor.authorMcDougall, R. G.
dc.contributor.authorStokes, Tim E.
dc.date.accessioned2013-02-07T23:07:23Z
dc.date.available2013-02-07T23:07:23Z
dc.date.copyright2013-03-01
dc.date.issued2012
dc.identifier.citationMcConnell, N. R., McDougall, R. G., & Stokes, T. (2013). On base radical and semisimple classes defined by class operators. Acta Mathematica Hungarica, 138(4), 307-328.en_NZ
dc.identifier.issn0236-5294
dc.identifier.urihttps://hdl.handle.net/10289/7153
dc.description.abstractBy using class operators, we define base radical and semisimple classes, within a broad abstract setting due to Puczylowski. The new notions agree with the usual Kurosh–Amitsur ones for associative rings and groups but differ for not necessarily associative rings, in general lying strictly between the Kurosh–Amitsur and torsion theory notions. A study of the class operators for their own sake is initiated, and a connection with modal logic is made.en_NZ
dc.language.isoen
dc.publisherSpringer-Verlagen_NZ
dc.relation.ispartofActa Mathematica Hungarica
dc.subjectradical classen_NZ
dc.subjectsemisimple classen_NZ
dc.subjectbase radicalen_NZ
dc.titleOn base radical and semisimple classes defined by class operatorsen_NZ
dc.typeJournal Articleen_NZ
dc.identifier.doi10.1007/s10474-012-0249-9en_NZ
dc.relation.isPartOfActa Mathematica Hungaricaen_NZ
pubs.begin-page307en_NZ
pubs.editionMarchen_NZ
pubs.elements-id37966
pubs.end-page328en_NZ
pubs.issue4en_NZ
pubs.volume138en_NZ


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record