Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Complete sets of metamorphoses: Twofold 4-cycle systems into twofold 6-cycle systems

      Billington, Elizabeth J.; Cavenagh, Nicholas J.; Khodkar, Abdollah
      DOI
       10.1016/j.disc.2012.04.029
      Find in your library  
      Citation
      Export citation
      Billington, E. J., Cavenagh, N. J., & Khodkar, A. (2012). Complete sets of metamorphoses: Twofold 4-cycle systems into twofold 6-cycle systems. Discrete Mathematics, 312(16), 2438-2445.
      Permanent Research Commons link: https://hdl.handle.net/10289/7208
      Abstract
      Let (X,C) denote a twofold k-cycle system with an even number of cycles. If these k-cycles can be paired together so that: (i) each pair contains a common edge; (ii) removal of the repeated common edge from each pair leaves a (2k-2)-cycle; (iii) all the repeated edges, once removed, can be rearranged exactly into a collection of further (2k-2)-cycles; then this is a metamorphosis of a twofold k-cycle system into a twofold (2k-2)-cycle system. The existence of such metamorphoses has been dealt with for the case of 3-cycles (Gionfriddo and Lindner, 2003) [3] and 4-cycles (Yazc, 2005) [7]. If a twofold k-cycle system (X,C) of order n exists, which has not just one but has k different metamorphoses, from k different pairings of its cycles, into twofold (2k-2)-cycle systems, such that the collection of all removed double edges from all k metamorphoses precisely covers 2 Kn, we call this a complete set of twofold paired k-cycle metamorphoses into twofold (2k-2)-cycle systems. In this paper, we show that there exists a twofold 4-cycle system (X,C) of order n with a complete set of metamorphoses into twofold 6-cycle systems if and only if n≡0,1,9,16 (mod 24), n≠9.
      Date
      2012
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement