Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Ensembles of restricted Hoeffding trees

      Bifet, Albert; Frank, Eibe; Holmes, Geoffrey; Pfahringer, Bernhard
      DOI
       10.1145/2089094.2089106
      Find in your library  
      Citation
      Export citation
      Bifet, A., Frank, E., Holmes, G., & Pfahringer, B. (2012). Ensembles of restricted Hoeffding trees. ACM Transactions on Intelligent Systems and Technology, 3(2), 1-20.
      Permanent Research Commons link: https://hdl.handle.net/10289/7235
      Abstract
      The success of simple methods for classification shows that is is often not necessary to model complex attribute interactions to obtain good classification accuracy on practical problems. In this article, we propose to exploit this phenomenon in the data stream context by building an ensemble of Hoeffding trees that are each limited to a small subset of attributes. In this way, each tree is restricted to model interactions between attributes in its corresponding subset. Because it is not known a priori which attribute subsets are relevant for prediction, we build exhaustive ensembles that consider all possible attribute subsets of a given size. As the resulting Hoeffding trees are not all equally important, we weigh them in a suitable manner to obtain accurate classifications. This is done by combining the log-odds of their probability estimates using sigmoid perceptrons, with one perceptron per class. We propose a mechanism for setting the perceptrons' learning rate using the ADWIN change detection method for data streams, and also use ADWIN to reset ensemble members (i.e., Hoeffding trees) when they no longer perform well. Our experiments show that the resulting ensemble classifier outperforms bagging for data streams in terms of accuracy when both are used in conjunction with adaptive naive Bayes Hoeffding trees, at the expense of runtime and memory consumption. We also show that our stacking method can improve the performance of a bagged ensemble.
      Date
      2012
      Type
      Journal Article
      Publisher
      Association for Computing Machinery (ACM)
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement