Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Synergistic electric field enhancement of the effectiveness of chlorine species formed during electrochemical disinfection of drinking water

      Nath, Hilary; Langdon, Alan
      DOI
       10.2166/ws.2012.064
      Find in your library  
      Citation
      Export citation
      Nath, H., & Langdon, A. (2012). Synergistic electric field enhancement of the effectiveness of chlorine species formed during electrochemical disinfection of drinking water. Water Science & Technology: Water Supply, 12(6), 862-868
      Permanent Research Commons link: https://hdl.handle.net/10289/7297
      Abstract
      In line in situ electrochemical disinfection of drinking water with chloride concentrations as low as 10 mg/L has been demonstrated at practical flow rates of at least 3 m3/day using a novel perforated electrode flow through (PEFT) cell with a 50 μm inter-electrode gap. Sufficient chlorine to achieve 6 log inactivation of Escherichia coli bacteria was produced at applied voltages as low as 5 V and with energy consumptions as low as 0.5 kWh/m3. At slightly higher applied voltages, the specific lethality of electrochemically produced chlorine was enhanced by at least two orders of magnitude to greater than 50 L/mg min. This dramatically enhanced lethality is consistent with a synergistic effect resulting from reversible electroporation when electric fields greater than 1.3 kV/cm are produced. There was no evidence for involvement of other species such as reactive oxygen species (ROSs). Disinfection of drinking water using the PEFT cell is cost competitive with other disinfection technologies and when enhanced by the electric field is much less likely to produce disinfection by products.
      Date
      2012
      Type
      Journal Article
      Publisher
      IWA Publishing
      Collections
      • Science and Engineering Papers [3077]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement