Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Effect of flow distribution on the photovoltaic performance of a building integrated photovoltaic/thermal (BIPV/T) collector

      Ghani, Faisal Abid; Duke, Mike; Carson, James K.
      DOI
       10.1016/j.solener.2012.02.013
      Find in your library  
      Citation
      Export citation
      Ghani, F., Duke, M., & Carson, J. K. (2012). Effect of flow distribution on the photovoltaic performance of a building integrated photovoltaic/thermal (BIPV/T) collector. Solar Energy, 86(5), 1518-1530.
      Permanent Research Commons link: https://hdl.handle.net/10289/7409
      Abstract
      The phenomenon of non-uniform flow distribution and its influence on thermal performance within a traditional solar thermal collector is well known. Its effect on the photovoltaic conversion of a hybrid photovoltaic/thermal (PV/T) collector however has received little attention. In this study an investigation has been carried out to determine what effect flow distribution will have on the photovoltaic yield of a BIPV/T collector of various size. A three step numerical analysis was conducted to model flow distribution, temperature variation, and photovoltaic yield for a PV/T collector of various design (manifold sizes), geometric shape (aspect ratio), and operating characteristics (mass flow rate and flow direction in manifolds) in order to vary flow uniformity within the collector. The results revealed that flow distribution within the collector will have a significant influence on the photovoltaic performance of a hybrid PV/T collector. For the scenario where flow distribution was most uniform, photovoltaic performance was improved by over 9% in comparison to a traditional photovoltaic (PV) collector operating under the same conditions. For poor flow however, performance was only improved by approximately 2%. Parameters found to influence flow distribution include the manifold to riser pipe ratio where a ratio of 4:1 was found to be ideal and that increasing to a 6:1 ratio offered negligible improvement. Additionally it was found that array geometry (characterised by its aspect ratio in this study) plays an important role on both flow distribution and photovoltaic yield. This study has identified that the optimal mass flow rate is dependent on the shape or aspect ratio of the array.
      Date
      2012
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement