Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Methods for improving heat exchanger area distribution and storage temperature selection in heat recovery loops

      Walmsley, Michael R.W.; Walmsley, Timothy Gordon; Atkins, Martin John; Neale, James R.
      DOI
       10.1016/j.energy.2013.02.050
      Find in your library  
      Citation
      Export citation
      Walmsley, M. R. W., Walmsley, T., Atkins, M. J., & Neale, J. R. (2013). Methods for improving heat exchanger area distribution and storage temperature selection in heat recovery loops. Energy, first published online 20 March 2013
      Permanent Research Commons link: https://hdl.handle.net/10289/7425
      Abstract
      Inter-plant Heat Integration across a large site can be achieved using a HRL (Heat Recovery Loop). In this paper the interrelationship between HRL storage temperatures, heat recovery and total HRL exchanger area is investigated. A methodology for designing a HRL based on a ΔTmin approach is compared to three programming optimisation approaches where heat exchangers are constrained to have the same NTU (Number of Heat Transfer Units), LMTD (Log-Mean Temperature Difference) or to find the absolute MTA (Minimum Total Area) for a given heat recovery level. Analysis is performed using time-averaged and transient mass flow rate data and temperature data. The actual temperature driving force of the HRL heat exchangers is compared to the apparent driving force as indicated by the Composite Curves. Results for the same heat recovery level show that the ΔTmin approach is effective at minimising total area to within 5% of the minimum area approach. Allocation of individual heat exchanger areas can vary widely depending on the optimisation method, the characteristics of the transient stream data and the differences in the approach and exit stream temperatures. Results suggest that using the ΔTmin method for selecting storage temperatures in combination with sizing exchangers based on the time average CP values (for while the process is running) gives a near optimal solution without requiring lots of data input or computing resources
      Date
      2013
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement