dc.contributor.author | Abel, R. Julian R. | |
dc.contributor.author | Cavenagh, Nicholas J. | |
dc.contributor.author | Kuhl, Jaromy | |
dc.date.accessioned | 2013-04-11T23:48:42Z | |
dc.date.available | 2013-04-11T23:48:42Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Abel, R.J.R., Cavenagh,N.J. & Kuhl,J. (2013) Induced subarrays of Latin squares without repeated symbols. Electronic Journal of Combinatorics. 20(1). | en_NZ |
dc.identifier.issn | 1077-8926 | |
dc.identifier.uri | https://hdl.handle.net/10289/7437 | |
dc.description.abstract | We show that for any Latin square L of order 2m, we can partition the rows and columns of L into pairs so that at most (m+3)/2 of the 2x2 subarrays induced contain a repeated symbol. We conjecture that any Latin square of order 2m (where m ≥ 2, with exactly five transposition class exceptions of order 6) has such a partition so that every 2x2 subarray induced contains no repeated symbol. We verify this conjecture by computer when m ≤ 4. | en_NZ |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | The Electronic Journal of Combinatorics | en_NZ |
dc.relation.uri | http://www.combinatorics.org/ojs/index.php/eljc/issue/view/Volume20-1 | en_NZ |
dc.rights | © 2013, The Authors. | en_NZ |
dc.subject | Latin square | en_NZ |
dc.subject | 2-partition | en_NZ |
dc.subject | conjugate | en_NZ |
dc.subject | isotopic | en_NZ |
dc.subject | transposition class | en_NZ |
dc.subject | k-partition | en_NZ |
dc.subject | discrepancy | en_NZ |
dc.subject | potential | en_NZ |
dc.title | Induced subarrays of Latin squares without repeated symbols | en_NZ |
dc.type | Journal Article | en_NZ |
dc.relation.isPartOf | The Electronic Journal of Combinatorics | en_NZ |
pubs.begin-page | 1 | en_NZ |
pubs.elements-id | 38808 | |
pubs.end-page | 13 | en_NZ |
pubs.issue | 1 | en_NZ |
pubs.volume | 20 | en_NZ |