Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Improving energy recovery in milk powder production through soft data optimisation

      Walmsley, Timothy Gordon; Walmsley, Michael R.W.; Atkins, Martin John; Neale, James R.
      DOI
       10.1016/j.applthermaleng.2013.01.051
      Find in your library  
      Citation
      Export citation
      Walmsley, T. G., Walmsley, M. R. W., Atkins, M. J., & Neale, J. R. (2013). Improving energy recovery in milk powder production through soft data optimisation. Applied Thermal Engineering, first published online 22 March 2013
      Permanent Research Commons link: https://hdl.handle.net/10289/7472
      Abstract
      Milk powder production is highly energy intensive and can benefit from the application of Pinch analysis techniques to develop better methods for integrating the process. In this study, process stream data is extracted from an industrial plant and Pinch analysis applied to calculate utility and heat recovery targets. Some of process data is also varied, within small ranges that do not harm product quality or violate environmental regulation, to minimise utility use targets. Using the Pinch design method and the targets as a guide, Maximum Energy Recovery (MER) networks are developed for two cases, where the condenser in the evaporator section of the plant may be directly or indirectly integrating into the reminder of the process. The two MER networks are compared to two heat exchanger network structures commonly found in industry. Results show that there is potential to increase specific heat recovery by over 30%, while reducing total cost by almost 10%, in the best case. To achieve maximum energy recovery, spray dryer exhaust air heat recovery is necessary and should be matched to preheat the dryer inlet air stream.
      Date
      2013
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3119]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement