Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Hydraulic properties, hydraulic efficiency and nitrate removal of organic carbon media for use in denitrification beds

      Cameron, Stewart Graham; Schipper, Louis A.
      DOI
       10.1016/j.ecoleng.2011.11.004
      Find in your library  
      Citation
      Export citation
      Cameron, S. G., & Schipper, L. A. (2012). Hydraulic properties, hydraulic efficiency and nitrate removal of organic carbon media for use in denitrification beds. Ecological Engineering, 41, 1-7.
      Permanent Research Commons link: https://hdl.handle.net/10289/7494
      Abstract
      Denitrification beds, utilising fragmented wood particles as the carbon source, have been successfully used to remove nitrate from point source discharge. Other more labile carbonaceous solids have provided higher short-term nitrate removal rates than wood in laboratory scale trials, but the longevity of these media is unproven. In addition, the nitrate removal rate of a bed is indicated to be temperature dependent. Improving the hydraulic efficiency of a denitrification bed, by reducing short-circuit flow, may also provide for increased long-term nitrate removal rate and reduced bed size and lower installation cost. In this study, we compared the hydraulic properties and hydraulic efficiency of nine carbon media, including five grain sizes of wood particles, in 0.2 m3 barrels, at two temperatures (14 °C and 23.5 °C). The relationship between hydraulic efficiency and nitrate removal of the different media was also investigated. We found that carbon substrate and temperature were more influential on nitrate removal rate than hydraulic efficiency of the media. While larger grain-sizes of wood media were less hydraulically efficient than smaller grain-sizes, the difference in hydraulic efficiency was small. We also found that primary porosity of the wood media increased with temperature, which may have been caused by contraction of the wood particles with increasing temperature due to loss of water from the cellulose to the liquid phase. While hydraulic properties and hydraulic efficiencies varied between carbon media, the variation did not cause significant difference in nitrate removal rate. The results indicate that future work on improving nitrate removal performance of denitrification beds should focus on carbon availability of the substrate and increasing bed temperature, rather than on identifying more hydraulically efficient media.
      Date
      2012
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement