Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analysis of nucleosides and nucleotides in infant formula by liquid chromatography–tandem mass spectrometry

      Gill, Brendon D.; Indyk, Harvey E.; Manley-Harris, Merilyn
      DOI
       10.1007/s00216-013-6935-9
      Link
       link.springer.com
      Find in your library  
      Citation
      Export citation
      Gill, B.D., Indyk, H.E. & Manley-Harris, M. (2013). Analysis of nucleosides and nucleotides in infant formula by liquid chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, published online 5 April, 2013.
      Permanent Research Commons link: https://hdl.handle.net/10289/7608
      Abstract
      A method for the simultaneous analysis of nucleosides and nucleotides in infant formula using reversed-phase liquid chromatography–tandem mass spectrometry is described. This approach is advantageous for compliance testing of infant formula over other LC-MS methods in which only nucleotides or nucleosides are measured. Following sample dissolution, protein was removed by centrifugal ultrafiltration. Chromatographic analyses were performed using a C18 stationary phase and gradient elution of an ammonium acetate/bicarbonate buffer, mass spectrometric detection and quantitation by a stable isotope-labelled internal standard technique. A single laboratory validation was performed, with spike recoveries of 80.1–112.9 % and repeatability relative standard deviations of 1.9–7.2 %. Accuracy as bias was demonstrated against reference values for NIST1849a certified reference material. The method has been validated for the analysis of bovine milk-based, soy-based, caprine milk-based and hydrolysed milk protein-based infant formulae.
      Date
      2013
      Type
      Journal Article
      Publisher
      Springer-Verlag
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement