Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Uptake of iron and its effect on grain refinement of pure magnesium by zirconium

      Cao, Peng; Qian, Ma; StJohn, David H.; Frost, M.T.
      Thumbnail
      Files
      uptake of iron.pdf
      9.205Mb
      DOI
       10.1179/026708304225012314
      Link
       www.ingentaconnect.com
      Find in your library  
      Citation
      Export citation
      Cao, P., Qian, M., & Frost, M.T. (2004). Uptake of iron and its effect on grain refinement of pure magnesium by zirconium. Materials Science and Technology 20(1), 585-592.
      Permanent Research Commons link: https://hdl.handle.net/10289/771
      Abstract
      The uptake of iron by molten magnesium from uncoated new mild steel crucibles at temperatures 680°C, 730°C, and 780°C has been investigated. It was shown that the uptake of iron was sluggish at 680°C and the use of 0.05% zirconium addition could effectively suppress the increase in iron content within the first 2 h of holding at temperature. Rapid and severe uptake of iron was observed at 780°C. As a consequence, it was found that the grain refinement of pure magnesium achieved by 1% zirconium addition nearly vanished after 60 min hold at 780°C due to the depletion of soluble zirconium. The uptake of iron at 730°C was conspicuous but it was still controllable by use of 0.05% zirconium addition within the first 60 min of holding at temperature. The work conducted using an aluminium titanite crucible and a boron nitride coated mild steel crucible at 730°C further confirmed the highly detrimental influence of the uptake of iron on the grain refinement of pure magnesium by zirconium. The characteristic zirconium rich coring structures developed from circular to rosette like when the melt was held at 730°C in an uncoated mild steel crucible, while no such evolution was observed when held in an aluminium titanite crucible at the same temperature. Recommendations to minimise the consumption of zirconium by the uptake of iron were made based on the results obtained from this investigation. The mechanism of grain refinement of magnesium by a low concentration of zirconium is discussed.
      Date
      2004-05
      Type
      Journal Article
      Publisher
      Maney Publishing
      Rights
      This article was first published in the journal, Materials Science and Technology.
      Collections
      • Science and Engineering Papers [3193]
      Show full item record  

      Usage

      Downloads, last 12 months
      52
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement