Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Artificial neural network is highly predictive of outcome in paediatric acute liver failure

      Rajanayagam, J.; Frank, Eibe; Shepherd, R. W.; Lewindon, P. J.
      DOI
       10.1111/petr.12100
      Link
       onlinelibrary.wiley.com
      Find in your library  
      Citation
      Export citation
      Rajanayagam, J., Frank, E., Shepherd, R. W., & Lewindon, P. J. (2013). Artificial neural network is highly predictive of outcome in paediatric acute liver failure. Pediatric Transplantation, published online 27 June 2013.
      Permanent Research Commons link: https://hdl.handle.net/10289/7752
      Abstract
      Current prognostic models in PALF are unreliable, failing to account for complex, non-linear relationships existing between multiple prognostic factors. A computational approach using ANN should provide superior modelling to PELD-MELD scores. We assessed the prognostic accuracy of PELD-MELD scores and ANN in PALF in children presenting to the QLTS, Australia. A comprehensive registry-based data set was evaluated in 54 children (32M, 22F, median age 17 month) with PALF. PELD-MELD scores calculated at (i) meeting PALF criteria and (ii) peak. ANN was evaluated using stratified 10-fold cross-validation. Outcomes were classified as good (transplant-free survival) or poor (death or LT) and predictive accuracy compared using AUROC curves. Mean PELD-MELD scores were significantly higher in non-transplanted non-survivors (i) 37 and (ii) 46 and transplant recipients (i) 32 and (ii) 43 compared to transplant-free survivors (i) 26 and (ii) 30. Threshold PELD-MELD scores ≥27 and ≥42, at meeting PALF criteria and peak, gave AUROC 0.71 and 0.86, respectively, for poor outcome. ANN showed superior prediction for poor outcome with AUROC 0.96, sensitivity 82.6%, specificity 96%, PPV 96.2% and NPV 85.7% (cut-off 0.5). ANN is superior to PELD-MELD for predicting poor outcome in PALF.
      Date
      2013
      Type
      Journal Article
      Publisher
      Wiley
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement