Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed ratesnzyme Catalyzed Rates

      Hobbs, Joanne K.; Jiao, Wanting; Easter, Ashley Davys; Parker, Emily J.; Schipper, Louis A.; Arcus, Vickery L.
      DOI
       10.1021/cb4005029
      Link
       pubs.acs.org
      Find in your library  
      Citation
      Export citation
      Hobbs, J. K., Jiao, W., Easter, A. D., Parker, E. J., Schipper, L. A., & Arcus, V. L. (2013). Change in Heat Capacity for Enzyme Catalysis Determines Temperature Dependence of Enzyme Catalyzed Rates. ACS Chemical Biology, published online on September 9 2013.
      Permanent Research Commons link: https://hdl.handle.net/10289/8012
      Abstract
      The increase in enzymatic rates with temperature up to an optimum temperature (Topt) is widely attributed to classical Arrhenius behavior, with the decrease in enzymatic rates above Topt ascribed to protein denaturation and/or aggregation. This account persists despite many investigators noting that denaturation is insufficient to explain the decline in enzymatic rates above Topt. Here we show that it is the change in heat capacity associated with enzyme catalysis (ΔC‡p) and its effect on the temperature dependence of ΔG‡ that determines the temperature dependence of enzyme activity. Through mutagenesis, we demonstrate that the Topt of an enzyme is correlated with ΔC‡p and that changes to ΔC‡p are sufficient to change Topt without affecting the catalytic rate. Furthermore, using X-ray crystallography and molecular dynamics simulations we reveal the molecular details underpinning these changes in ΔC‡p. The influence of ΔC‡p on enzymatic rates has implications for the temperature dependence of biological rates from enzymes to ecosystems.
      Date
      2013
      Type
      Journal Article
      Publisher
      American Chemical Society
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement