Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Oxytocin receptor blockade reduces acquisition but not retrieval of taste aversion and blunts responsiveness of amygdala neurons to an aversive stimulus

      Olszewski, Pawel K.; Waas, Joseph R.; Brooks, Lydia L.; Herisson, Florence; Levine, Allen S.
      DOI
       10.1016/j.peptides.2013.09.008
      Link
       www.sciencedirect.com
      Find in your library  
      Citation
      Export citation
      Olszewski, P. K., Waas, J. R., Brooks, L. L., Herisson, F., & Levine, A. S. (2013). Oxytocin receptor blockade reduces acquisition but not retrieval of taste aversion and blunts responsiveness of amygdala neurons to an aversive stimulus. Peptides, 50, 36-41.
      Permanent Research Commons link: https://hdl.handle.net/10289/8039
      Abstract
      When gastrointestinal sickness induced by toxin injection is associated with exposure to novel food, the animal acquires a conditioned taste aversion (CTA). Malaise is accompanied by a surge in oxytocin release and in oxytocin neuronal activity; however, it is unclear whether oxytocin is a key facilitator of aversion or merely its marker. Herein we investigated whether blockade of the oxytocin receptor with the blood–brain barrier penetrant oxytocin receptor antagonist L-368,899 is detrimental for the acquisition and/or retrieval of lithium chloride (LiCl)-dependent CTA to a saccharin solution in mice. We also examined whether L-368,899 given prior to LiCl affects neuronal activity defined through c-Fos immunohistochemistry in select brain sites facilitating CTA acquisition. L-368,899 given prior to LiCl caused a 30% increase in saccharin solution intake in a two-bottle test, but when the antagonist was administered before the two-bottle test, it failed to diminish the retrieval of an existing CTA. LiCl administration increased c-Fos expression in the hypothalamic paraventricular and supraoptic nuclei, area postrema, nucleus of the solitary tract and basolateral and central (CNA) nuclei of the amygdala. L-368,899 injected before LiCl reduced the number of c-Fos positive CNA neurons and brought it down to levels similar to those observed in mice treated only with L-368,899. We conclude that oxytocin is one of the key components in acquisition of LiCl-induced CTA and the aversive response can be alleviated by the oxytocin receptor blockade. Oxytocin receptor antagonism blunts responsiveness of CNA to peripherally injected LiCl.
      Date
      2013
      Type
      Journal Article
      Publisher
      Elsevier
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement