Show simple item record  

dc.contributor.authorBouckaert, Remco R.
dc.coverage.spatialConference held at Auckland, New Zealanden_NZ
dc.date.accessioned2013-10-15T03:52:30Z
dc.date.available2013-10-15T03:52:30Z
dc.date.copyright2008
dc.date.issued2008
dc.identifier.citationBouckaert, R. R. (2008). Practical bias variance decomposition. In W. Wobcke & M. Zhang (eds), Proceedings of the 21st Australian Joint Conference on Artificial Intelligence Auckland, New Zealand, December 1-5, 2008 (pp. 247-257). Berlin, Germany: Springer Berlin Heidelberg.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/8074
dc.description.abstractBias variance decomposition for classifiers is a useful tool in understanding classifier behavior. Unfortunately, the literature does not provide consistent guidelines on how to apply a bias variance decomposition. This paper examines the various parameters and variants of empirical bias variance decompositions through an extensive simulation study. Based on this study, we recommend to use ten fold cross validation as sampling method and take 100 samples within each fold with a test set size of at least 2000. Only if the learning algorithm is stable, fewer samples, a smaller test set size or lower number of folds may be justified.en_NZ
dc.language.isoenen_NZ
dc.publisherSpringeren_NZ
dc.relation.urihttp://link.springer.com/chapter/10.1007%2F978-3-540-89378-3_24en_NZ
dc.subjectcomputer scienceen_NZ
dc.titlePractical bias variance decompositionen_NZ
dc.typeConference Contributionen_NZ
dc.identifier.doi10.1007/978-3-540-89378-3_24en_NZ
dc.relation.isPartOfProc Twenty-first Australian Joint Conference on Artificial Intelligenceen_NZ
pubs.begin-page247en_NZ
pubs.elements-id18132
pubs.end-page257en_NZ
pubs.finish-date2008-12-05en_NZ
pubs.start-date2008-12-01en_NZ
pubs.volumeLNAI 5360en_NZ


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record