Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      The whole-plant compensation point as a measure of juvenile tree light requirements

      Lusk, Christopher H.; Jorgensen, Murray A.
      DOI
       10.1111/1365-2435.12129
      Link
       onlinelibrary.wiley.com
      Find in your library  
      Citation
      Export citation
      Lusk, C. H., Jorgensen, M. A. (2013). The whole-plant compensation point as a measure of juvenile tree light requirements. Functional Ecology, published online 25 June, 2013.
      Permanent Research Commons link: https://hdl.handle.net/10289/8151
      Abstract
      1. Although ‘shade tolerance’ has featured prominently in the vocabulary of foresters and ecologists for a century, we have yet to agree on a standardized method for quantifying this elusive property. The ‘whole-plant compensation point’, interpolated from stem growth measurements across a wide range of light environments, has been proposed as a simple, robust measure of species shade tolerance. Others have argued that shade tolerance is primarily a function of differential ability to survive periods of slow growth (‘suppression’), implying that measurements of survival are vital.

      2. We measured growth of juveniles (500–1000 mm tall) of five evergreen trees over 12 months in a cool-temperate rain forest in New Zealand, to determine whether whole-plant compensation points predicted species differences in occupancy of understorey light environments, which were quantified using hemispherical photography.

      3. The five species encompassed 3•5-fold variation in whole-plant compensation points. Compensation points of most species fell within the first quartile of the distribution of light environments occupied by juveniles; they were also correlated with low-light mortality rates of juveniles, estimated from permanent plot data archived in the National Vegetation Survey Databank. Compensation points were also significantly positively correlated with height growth rates in high light, confirming the presence of the growth vs. shade tolerance trade-off detected in many other forest tree assemblages.

      4. Results show that, in temperate evergreen forests, the whole-plant compensation point distinguishes reliably between species of differing shade tolerance. Excepting situations involving parameterization of demographic models, shade tolerance can therefore be assessed without survival measurements. However, estimating whole-plant compensation points may prove more difficult in deciduous forests, where seasonal variation in understorey light transmission poses additional challenges.
      Date
      2013
      Type
      Journal Article
      Publisher
      Wiley
      Collections
      • Computing and Mathematical Sciences Papers [1452]
      • Science and Engineering Papers [3069]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement