Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Using absolute metric maps to close cycles in a topological map

      Jefferies, Margaret E.; Yeap, Wai-kiang; Cosgrove, Michael C.; Baker, Jesse T.
      DOI
       10.1007/s10845-005-4372-0
      Link
       link.springer.com
      Find in your library  
      Citation
      Export citation
      Jefferies, M. E., Yeap, W.-K., Cosgrove, M. C. & Baker, J. T. (2005). Using absolute metric maps to close cycles in a topological map. Journal of Intelligent Manufacturing, 16(6), 693-702.
      Permanent Research Commons link: https://hdl.handle.net/10289/8181
      Abstract
      In simultaneous localisation and mapping (SLAM) the correspondence problem, specifically detecting cycles, is one of the most difficult challenges for an autonomous mobile robot. In this paper we show how significant cycles in a topological map can be identified with a companion absolute global metric map. A tight coupling of the basic unit of representation in the two maps is the key to the method. Each local space visited is represented, with its own frame of reference, as a node in the topological map. In the global absolute metric map these local space representations from the topological map are described within a single global frame of reference. The method exploits the overlap which occurs when duplicate representations are computed from different vantage points for the same local space. The representations need not be exactly aligned and can thus tolerate a limited amount of accumulated error. We show how false positive overlaps which are the result of a misaligned map, can be discounted.
      Date
      2005
      Type
      Journal Article
      Publisher
      Springer
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement