Show simple item record  

dc.contributor.authorJefferies, Margaret E.
dc.contributor.authorYeap, Wai-kiang
dc.contributor.authorCosgrove, Michael C.
dc.contributor.authorBaker, Jesse T.
dc.identifier.citationJefferies, M. E., Yeap, W.-K., Cosgrove, M. C. & Baker, J. T. (2005). Using absolute metric maps to close cycles in a topological map. Journal of Intelligent Manufacturing, 16(6), 693-702.en_NZ
dc.description.abstractIn simultaneous localisation and mapping (SLAM) the correspondence problem, specifically detecting cycles, is one of the most difficult challenges for an autonomous mobile robot. In this paper we show how significant cycles in a topological map can be identified with a companion absolute global metric map. A tight coupling of the basic unit of representation in the two maps is the key to the method. Each local space visited is represented, with its own frame of reference, as a node in the topological map. In the global absolute metric map these local space representations from the topological map are described within a single global frame of reference. The method exploits the overlap which occurs when duplicate representations are computed from different vantage points for the same local space. The representations need not be exactly aligned and can thus tolerate a limited amount of accumulated error. We show how false positive overlaps which are the result of a misaligned map, can be discounted.en_NZ
dc.relation.ispartofJournal of Intelligent Manufacturing
dc.subjectcognitive mappingen_NZ
dc.subjectabsolute space representationen_NZ
dc.subjecttopological mapsen_NZ
dc.subjectglobal mapsen_NZ
dc.titleUsing absolute metric maps to close cycles in a topological mapen_NZ
dc.typeJournal Articleen_NZ
dc.relation.isPartOfJournal of Intelligent Manufacturingen_NZ

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record