Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Bacterial diversity in three different antarctic cold desert mineral soils

      Smith, Jacques J.; Tow, Lemese Ah; Stafford, William; Cary, S. Craig; Cowan, Don A.
      DOI
       10.1007/s00248-006-9022-3
      Link
       link.springer.com
      Find in your library  
      Citation
      Export citation
      Smith, J. J., Tow, L. A., Stafford, W., Cary, C., & Cowan, D. A. (2006). Bacterial Diversity in Three Different Antarctic Cold Desert Mineral Soils. Microbial Ecology, 51(4), 413-421.
      Permanent Research Commons link: https://hdl.handle.net/10289/8393
      Abstract
      A bacterial phylogenetic survey of three environmentally distinct Antarctic Dry Valley soil biotopes showed a high proportion of so-called “uncultured” phylotypes, with a relatively low diversity of identifiable phylotypes. Cyanobacterial phylotypic signals were restricted to the high-altitude sample, whereas many of the identifiable phylotypes, such as the members of the Actinobacteria, were found at all sample sites. Although the presence of Cyanobacteria and Actinobacteria is consistent with previous culture-dependent studies of microbial diversity in Antarctic Dry Valley mineral soils, many phylotypes identified by 16S rDNA analysis were of groups that have not hitherto been cultured from Antarctic soils. The general belief that such “extreme” environments harbor a relatively low species diversity was supported by the calculation of diversity indices. The detection of a substantial number of uncultured bacterial phylotypes showing low BLAST identities (<95%) suggests that Antarctic Dry Valley mineral soils harbor a pool of novel psychrotrophic taxa.
      Date
      2006
      Type
      Journal Article
      Publisher
      Springer
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement