Show simple item record  

dc.contributor.authorGeilke, Michael
dc.contributor.authorFrank, Eibe
dc.contributor.authorKramer, Stefan
dc.coverage.spatialConference held at Bristol, UKen_NZ
dc.date.accessioned2014-01-22T00:59:25Z
dc.date.available2014-01-22T00:59:25Z
dc.date.issued2012
dc.identifier.citationGeilke, M., Frank, E., & Kramer, S. (2012). Online estimation of discrete densities using classifier chains. In Proceedings of ECML PKDD 2012 Workshop on Instant Interactive Data Mining, Bristol, UK, 24-28 September 2012.en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/8421
dc.description.abstractWe propose an approach to estimate a discrete joint density online, that is, the algorithm is only provided the current example, its current estimate, and a limited amount of memory. To design an online estimator for discrete densities, we use classifier chains to model dependencies among features. Each classifier in the chain estimates the probability of one particular feature. Because a single chain may not provide a reliable estimate, we also consider ensembles of classifier chains. Our experiments on synthetic data show that the approach is feasible and the estimated densities approach the true, known distribution with increasing amounts of data.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherADReMen_NZ
dc.relation.urihttp://www.ecmlpkdd2012.net/programme/workshops/en_NZ
dc.rightsThis is an author’s accepted version of an article published in Proceedings of ECML PKDD 2012 Workshop on Instant Interactive Data Mining.en_NZ
dc.subjectcomputer scienceen_NZ
dc.subjectdata miningen_NZ
dc.subjectMachine learning
dc.titleOnline estimation of discrete densities using classifier chainsen_NZ
dc.typeJournal Articleen_NZ
dc.relation.isPartOfProc ECML PKDD 2012 Workshop on Instant Interactive Data Miningen_NZ
pubs.begin-page1en_NZ
pubs.elements-id22942
pubs.end-page11en_NZ
pubs.finish-date2012-09-24en_NZ
pubs.start-date2012-09-24en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record