Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      On the ratio of the sum of divisors and Euler’s Totient Function I

      Broughan, Kevin A.; Delbourgo, Daniel
      Thumbnail
      Files
      on the Ratio.pdf
      189.7Kb
      Link
       cs.uwaterloo.ca
      Citation
      Export citation
      Broughtan, K. A. & Delbourgo, D. (2013). On the ratio of the sum of divisors and Euler’s Totient Function I. Journal of Integer Sequences, 16, article 13.8.8.
      Permanent Research Commons link: https://hdl.handle.net/10289/8429
      Abstract
      We prove that the only solutions to the equation σ(n)=2φ(n) with at most three distinct prime factors are 3, 35 and 1045. Moreover, there exist at most a finite number of solutions to σ(n)=2φ(n) with Ω(n)≤ k, and there are at most 22k+k-k squarefree solutions to φ (n)|σ(n) if ω(n)=k. Lastly the number of solutions to φ(n)|φ(n) as x→∞ is O(x exp(-½√log x)).
      Date
      2013
      Type
      Journal Article
      Rights
      This article has been published in the Journal of Integer Sequences. © 2013 the authors.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      23
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement