Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves

Abstract

A candidate mechanism for the heating of the solar corona in open field line regions is described. The interaction of Alfvén waves, generated in the photosphere or chromosphere, with their reflections and the subsequent driving of quasi-two-dimensional MHD turbulence is considered. A nonlinear cascade drives fluctuations toward short wavelengths which are transverse to the mean field, thereby heating at rates insensitive to restrictive Alfvén timescales. A phenomenology is presented, providing estimates of achievable heating efficiency that are most favorable.

Citation

Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J., & Dmitruk, P. (1999). Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves. The Astrophysical Journal, 523(1), L93-L96.

Series name

Date

Publisher

IOP PUBLISHING LTD

Degree

Type of thesis

Supervisor