Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Ion parallel viscosity and anisotropy in MHD turbulence

      Oughton, Sean
      Thumbnail
      Files
      Ion parallel.pdf
      294.5Kb
      DOI
       10.1017/s0022377800019504
      Find in your library  
      Citation
      Export citation
      Oughton, S. (1996). Ion parallel viscosity and anisotropy in MHD turbulence. J. Plasma Phys., 56(03), 641-657.
      Permanent Research Commons link: https://hdl.handle.net/10289/8632
      Abstract
      We report on results from direct numerical simulation of the incompressible three- dimensional magnetohydrodynamic (MHD) equations, modified to incorporate viscous dissipation via the strongly anisotropic ion-parallel viscosity term. Both linear and nonlinear cases are considered, all with a strong background magnetic field. It is found that spectral anisotropy develops in almost all cases, but that the contribution from effects associated with the ion-parallel viscosity is relatively weak compared with the previously reported nonlinear process. Furthermore, and in contrast to this earlier work, it is suggested that when B₀ is large, the anisotropy will develop and persist for many large-scale turnover times even for non-dissipative runs. Resistive dissipation is found to dominate over viscous even when the resistivity is several orders of magnitude smaller than the ion parallel viscosity. A variance anisotropy effect and anisotropy dependence on the polarization of the fluctuations are also observed.
      Date
      1996
      Type
      Journal Article
      Publisher
      Cambridge University Press
      Rights
      ©1996 Cambridge University Press.
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

      Downloads, last 12 months
      52
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement