Show simple item record  

dc.contributor.authorKabán, Ata
dc.contributor.authorDurrant, Robert J.
dc.contributor.editorJain, S
dc.contributor.editorMunos, R
dc.contributor.editorStephan, F
dc.contributor.editorZeugmann, T
dc.coverage.spatialConference held at Singapore
dc.date.accessioned2014-12-10T00:02:31Z
dc.date.available2013-10-06
dc.date.available2014-12-10T00:02:31Z
dc.date.issued2013
dc.identifier.citationKaban, A., & Durrant, R. J. (2013). Dimension-adaptive bounds on compressive FLD Classification. In S. Jain, R. Munos, F. Stephan, & T. Zeugmann (Eds.), Proceedings of 24th International Conference on Algorithmic Learning Theory, Vol. LNAI 8139(pp. 294–308). Berlin, Germany: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-40935-6_21en
dc.identifier.issn0302-9743
dc.identifier.urihttps://hdl.handle.net/10289/8939
dc.description.abstractEfficient dimensionality reduction by random projections (RP) gains popularity, hence the learning guarantees achievable in RP spaces are of great interest. In finite dimensional setting, it has been shown for the compressive Fisher Linear Discriminant (FLD) classifier that forgood generalisation the required target dimension grows only as the log of the number of classes and is not adversely affected by the number of projected data points. However these bounds depend on the dimensionality d of the original data space. In this paper we give further guarantees that remove d from the bounds under certain conditions of regularity on the data density structure. In particular, if the data density does not fill the ambient space then the error of compressive FLD is independent of the ambient dimension and depends only on a notion of ‘intrinsic dimension'.
dc.format.extent294 - 308 (15)
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherSpringer Berlin Heidelberg
dc.rightsThis is an author’s accepted version of a paper published in Algorithmic Learning Theory; 24th International Conference, ALT 2013, Singapore, October 6-9, 2013. Proceedings. © Springer-Verlag Berlin Heidelberg 2013.
dc.source24th International Conference on Algorithmic Learning Theory (ALT)en_NZ
dc.subjectcompressed learning
dc.subjectintrinsic dimension
dc.subjectrandom projections
dc.subjectMachine learning
dc.titleDimension-adaptive bounds on compressive FLD Classification
dc.typeConference Contribution
dc.identifier.doi10.1007/978-3-642-40935-6_21
dc.relation.isPartOfProceedings of 24th International Conference on Algorithmic Learning Theory
pubs.begin-page294
pubs.elements-id23686
pubs.end-page308
pubs.finish-date2013-10-09
pubs.place-of-publicationBerlin, Germany
pubs.start-date2013-10-06
pubs.volumeLNAI 8139


Files in this item

This item appears in the following Collection(s)

Show simple item record