Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Towards large scale continuous EDA: a random matrix theory perspective

      Kabán, Ata; Bootkrajang, Jakramate; Durrant, Robert J.
      Thumbnail
      Files
      eda.pdf
      Accepted version, 512.2Kb
      DOI
       10.1145/2463372.2463423
      Find in your library  
      Citation
      Export citation
      Kaban, A., Bootkrajang, J., & Durrant, R. J. (2013). Towards large scale continuous EDA: a random matrix theory perspective. In C. Blum (Ed.), Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation Conference, 6-10 July 2013 (pp. 383–390). New York, NY, USA: ACM. http://doi.org/10.1145/2463372.2463423
      Permanent Research Commons link: https://hdl.handle.net/10289/8940
      Abstract
      Estimation of distribution algorithms (EDA) are a major branch of evolutionary algorithms (EA) with some unique advantages in principle. They are able to take advantage of correlation structure to drive the search more efficiently, and they are able to provide insights about the structure of the search space. However, model building in high dimensions is extremely challenging and as a result existing EDAs lose their strengths in large scale problems.

      Large scale continuous global optimisation is key to many real world problems of modern days. Scaling up EAs to large scale problems has become one of the biggest challenges of the field.

      This paper pins down some fundamental roots of the problem and makes a start at developing a new and generic framework to yield effective EDA-type algorithms for large scale continuous global optimisation problems. Our concept is to introduce an ensemble of random projections of the set of fittest search points to low dimensions as a basis for developing a new and generic divide-and-conquer methodology. This is rooted in the theory of random projections developed in theoretical computer science, and will exploit recent advances of non-asymptotic random matrix theory.
      Date
      2013
      Type
      Conference Contribution
      Publisher
      ACM
      Rights
      This is an author’s accepted version of a paper published in the Proceedings of the 15th annual conference on Genetic and evolutionary computation. © 2013 ACM.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      58
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement