Loading...
Thumbnail Image
Item

Analysis of circuit conditions for optimum intermodulation and gain in bipolar cascomp amplifiers with non-ideal error correction

Abstract
The cascoded-compensation or ‘Cascomp’ amplifier offers excellent distortion reduction and thermal distortion rejection, but has not seen widespread use because of a limited gain and increased complexity compared with other topologies. The original theory showed that with the addition of an ideal error amplifier the circuit will completely compensate distortion for suitably chosen degeneration and bias values. This research presents a new, rigorous mathematical proof for conditions of compensation. The authors further develop the proof to include the non-idealities of the error amplifier. It is shown that there exists a second bias point, not exposed by the original analysis that offers improved gain while maintaining distortion cancellation. By reducing the error amplifier degeneration resistance, one can increase a Cascomp circuit's overall gain by several dB while maintaining theoretically perfect distortion compensation. A robust bias point is proposed, which takes the advantage of this new theory by optimising circuit values resulting in a comparatively broader and deeper third-order distortion null. The proposed theory is confirmed with simulation and measurement that show agreement within the bounds of process and component error limits.
Type
Journal Article
Type of thesis
Series
Citation
Balsom, T., Scott, J. B., & Redman-White, W. (2014). Analysis of circuit conditions for optimum intermodulation and gain in bipolar cascomp amplifiers with non-ideal error correction. IET Circuits, Devices and Systems, 568–575. http://doi.org/10.1049/iet-cds.2014.0105
Date
2014-11-20
Publisher
INST ENGINEERING & TECHNOLOGY
Degree
Supervisors
Rights
This is an author's accepted version of an article published in the journal: IET Circuits, Devices & Systems. © Crown Copyright 2014.