Show simple item record  

dc.contributor.authorDelbourgo, Daniel
dc.contributor.authorPeters, Lloyd
dc.date.accessioned2015-04-29T04:43:57Z
dc.date.available2015-02-03
dc.date.available2015-04-29T04:43:57Z
dc.date.issued2015-02-03
dc.identifier.citationDelbourgo, D., & Peters, L. (2015). Higher order congruences amongst hasse-weil L-values. Journal of the Australian Mathematical Society, 98(1), 1–38. http://doi.org/10.1017/S1446788714000445en
dc.identifier.issn1446-7887
dc.identifier.urihttps://hdl.handle.net/10289/9305
dc.description.abstractFor the (d+1)-dimensional Lie group G=Z×pZp⊕d we determine through the use of p-power congruences a necessary and sufficient set of conditions whereby a collection of abelian L-functions arises from an element in K₁Zp[G]. If E is a semistable elliptic curve over Q, these abelian L-functions already exist; therefore, one can obtain many new families of higher order p-adic congruences. The first layer congruences are then verified computationally in a variety of cases.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherCambridge University Press
dc.rightsThis article is published in the Journal of the Australian Mathematical Society. © 2014 Australian Mathematical Publishing Association Inc.
dc.subjectelliptic curves
dc.subjectIwasawa theory
dc.subjectK-theory
dc.subjectL-functions
dc.titleHigher order congruences amongst hasse-weil L-values
dc.typeJournal Article
dc.identifier.doi10.1017/S1446788714000445
dc.relation.isPartOfJournal of the Australian Mathematical Society
pubs.begin-page1
pubs.elements-id118991
pubs.end-page38
pubs.issue1
pubs.organisational-group/Waikato
pubs.organisational-group/Waikato/FCMS
pubs.organisational-group/Waikato/FCMS/Mathematics
pubs.volume98
dc.identifier.eissn1446-8107


Files in this item

This item appears in the following Collection(s)

Show simple item record