Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Algorithm selection on data streams

      van Rijn, Jan N.; Holmes, Geoffrey; Pfahringer, Bernhard; Vanschoren, Joaquin
      Thumbnail
      Files
      Algorithm selection on data streams.pdf
      241.6Kb
      DOI
       10.1007/978-3-319-11812-3_28
      Link
       dx.doi.org
      Find in your library  
      Citation
      Export citation
      van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2014). Algorithm selection on data streams. In S. Džeroski, P. Panov, D. Kocev, & L. Todorovski (Eds.), Proceedings of 17th International Conference on Discovery Science (Vol. LNAI 8777, pp. 325–336). Springer International Publishing. http://doi.org/10.1007/978-3-319-11812-3_28
      Permanent Research Commons link: https://hdl.handle.net/10289/9337
      Abstract
      We explore the possibilities of meta-learning on data streams, in particular algorithm selection. In a first experiment we calculate the characteristics of a small sample of a data stream, and try to predict which classifier performs best on the entire stream. This yields promising results and interesting patterns. In a second experiment, we build a meta-classifier that predicts, based on measurable data characteristics in a window of the data stream, the best classifier for the next window. The results show that this meta-algorithm is very competitive with state of the art ensembles, such as OzaBag, OzaBoost and Leveraged Bagging. The results of all experiments are made publicly available in an online experiment database, for the purpose of verifiability, reproducibility and generalizability.
      Date
      2014
      Type
      Conference Contribution
      Publisher
      Springer International Publishing
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      87
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement