Learning from the past with experiment databases
Citation
Export citationVanschoren, J., Pfahringer, B. & Holmes, G. (2008). Learning from the past with experiment databases. (Working paper 08/2008). Hamilton, New Zealand: University of Waikato, Department of Computer Science.
Permanent Research Commons link: https://hdl.handle.net/10289/970
Abstract
Thousands of Machine Learning research papers contain experimental comparisons that usually have been conducted with a single focus of interest, and detailed results are usually lost after publication. Once past experiments are collected in experiment databases they allow for additional and possibly much broader investigation. In this paper, we show how to use such a repository to answer various interesting research questions about learning algorithms and to verify a number of recent studies. Alongside performing elaborate comparisons and rankings of algorithms, we also investigate the effects of algorithm parameters and data properties, and study the learning curves and bias-variance profiles of algorithms to gain deeper insights into their behavior.
Date
2008-06-24Type
Report No.
08/2008
Publisher
University of Waikato, Department of Computer Science
Collections
- 2008 Working Papers [14]