Show simple item record  

dc.contributor.authorDelbourgo, Danielen_NZ
dc.date.accessioned2015-11-16T00:33:58Z
dc.date.available2014en_NZ
dc.date.available2015-11-16T00:33:58Z
dc.date.issued2014en_NZ
dc.identifier.citationDelbourgo, D. (2014). Exceptional zeros of p-adic L-functions over non-abelian extensions. Glasgow Mathematical Journal, First View. http://doi.org/10.1017/S0017089515000245en
dc.identifier.issn1469-509Xen_NZ
dc.identifier.urihttps://hdl.handle.net/10289/9749
dc.description.abstractSuppose E is an elliptic curve over , and p > 3 is a split multiplicative prime for E. Let q = p be an auxiliary prime, and fix an integer m coprime to pq. We prove the generalised Mazur–Tate–Teitelbaum conjecture for E at the prime p, over number fields K ⊂ μq∞ , q∞√m such that p remains inert in K ∩ (μq∞ ) +. The proof makes use of an improved p-adic L-function, which can be associated to the Rankin convolution of two Hilbert modular forms of unequal parallel weight.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherCambridge University Press (CUP)en_NZ
dc.rights.uriThe is an accepted version of an article published in the journal: Glasgow Math. © 2015 Glasgow Mathematical Journal Trust.
dc.titleExceptional zeros of p-adic L-functions over non-abelian extensionsen_NZ
dc.typeJournal Article
dc.identifier.doi10.1017/S0017089515000245en_NZ
dc.relation.isPartOfGlasgow Mathematical Journalen_NZ
pubs.begin-page385en_NZ
pubs.elements-id115915
pubs.end-page432en_NZ
pubs.issue02en_NZ
pubs.publication-statusAccepteden_NZ
pubs.volumeFirst Viewen_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record