Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Case study on bagging stable classifiers for data streams

      van Rijn, Jan N.; Holmes, Geoffrey; Pfahringer, Bernhard; Vanschoren, Joaquin
      Thumbnail
      Files
      benelearn2015paper.pdf
      Published version, 162.1Kb
      Citation
      Export citation
      van Rijn, J. N., Holmes, G., Pfahringer, B., & Vanschoren, J. (2015). Case study on bagging stable classifiers for data streams. In Twenty-fourth Belgian-Dutch Conference on Machine Learning. Delft, Netherlands.
      Permanent Research Commons link: https://hdl.handle.net/10289/9765
      Abstract
      Ensembles of classifiers are among the strongest classi-fiers in most data mining applications. Bagging ensembles exploit the instability of base-classifiers by training them on different bootstrap replicates. It has been shown that Bagging instable classifiers, such as decision trees, yield generally good results, whereas bagging stable classifiers, such as k-NN, makes little difference. However, recent work suggests that this cognition applies to the classical batch data mining setting rather than the data stream setting. We present an empirical study that supports this observation.
      Date
      2015
      Type
      Conference Contribution
      Rights
      ©2015 copyright with the author.
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

      Downloads, last 12 months
      19
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement