Draft genome sequence of uncultured upland soil cluster gammaproteobacteria gives molecular insights into high-affinity methanotrophy

Abstract

Aerated soils form the second largest sink for atmospheric CH₄. A nearcomplete genome of uncultured upland soil cluster Gammaproteobacteria that oxidize CH₄ at 2.5 ppmv was obtained from incubated Antarctic mineral cryosols. This first genome of high-affinity methanotrophs can help resolve the mysteries about their phylogenetic affiliation and metabolic potential.

Citation

Edwards, C. R., Onstott, T. C., Miller, J. M., Wiggins, J. B., Wang, W., Lee, C. K., … Lau, M. C. Y. (2017). Draft genome sequence of uncultured upland soil cluster gammaproteobacteria gives molecular insights into high-affinity methanotrophy. Genome Announcements, 5(17), e00047–17. https://doi.org/10.1128/genomeA.00047-17

Series name

Date

Publisher

Degree

Type of thesis

Supervisor