Publication:
Using model trees for classification

dc.contributor.authorFrank, Eibe
dc.contributor.authorWang, Yong
dc.contributor.authorInglis, Stuart J.
dc.contributor.authorHolmes, Geoffrey
dc.contributor.authorWitten, Ian H.
dc.date.accessioned2008-10-20T03:41:59Z
dc.date.available2008-10-20T03:41:59Z
dc.date.issued1997-04
dc.description.abstractModel trees, which are a type of decision tree with linear regression functions at the leaves, form the basis of a recent successful technique for predicting continuous numeric values. They can be applied to classification problems by employing a standard method of transforming a classification problem into a problem of function approximation. Surprisingly, using this simple transformation the model tree inducer M5’, based on Quinlan’s M5, generates more accurate classifiers than the state-of-the-art decision tree learner C5.0, particularly when most of the attributes are numeric.en_US
dc.format.mimetypeapplication/pdf
dc.identifier.citationFrank, E., Wang, Y., Inglis, S., Holmes, G. & Witten, I.H. (1997). Using model trees for classification. (Working paper 97/12). Hamilton, New Zealand: University of Waikato, Department of Computer Science.en_US
dc.identifier.issn1170-487X
dc.identifier.urihttps://hdl.handle.net/10289/1075
dc.language.isoen
dc.relation.ispartofseriesComputer Science Working Papers
dc.subjectmodel treesen_US
dc.subjectclassification algorithmsen_US
dc.subjectM5en_US
dc.subjectC5.0en_US
dc.subjectdecision treesen_US
dc.subjectMachine learning
dc.titleUsing model trees for classificationen_US
dc.typeWorking Paperen_US
dspace.entity.typePublication
uow.relation.series97/12

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
uow-cs-wp-1997-12.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Item-specific license agreed upon to submission
Description: