Loading...
Paddock scale nitrous oxide emissions from intensively grazed pasture: Quantification and mitigation
Abstract
Agricultural soils are the main contributor to global emissions of the potent greenhouse gas nitrous oxide (Nâ‚‚O) to the atmosphere. Nitrous oxide can absorb and transform radiative energy emitted from the sun to earth into heat. The ability of Nâ‚‚O to absorb energy is part of the greenhouse effect and naturally contributes to habitable temperature conditions for life on earth. Atmospheric concentrations of Nâ‚‚O have never before increased as rapidly as observed since the onset of industrialisation. High Nâ‚‚O concentrations enhance the greenhouse effect and, at present, add to a warming atmosphere and a changing climate. A major pathway for Nâ‚‚O production is from soils that receive large surpluses of reactive nitrogen, e.g., in the form of animal excreta or fertiliser. Once available in the soil, microbes can access and transform this nitrogen into different compounds: Nâ‚‚O, for example. The current contribution of agricultural soils to global Nâ‚‚O emissions is about 60% but higher in New Zealand, where soils are responsible for 94% of national Nâ‚‚O emissions. However, robust quantifications are not straightforward and challenging for science to overcome. This thesis is sited at the interface of this challenge and aimed at measuring the exchange of Nâ‚‚O over an intensively grazed dairy pasture in New Zealand. The core of the work was based on eddy covariance (EC), a technique that allows measuring the Nâ‚‚O exchange between the soil and the atmosphere at ten times per second. Since EC measurements of Nâ‚‚O over dairy grazed land are rare, main objectives of this work were: to 1) compare EC to traditional measurement approaches, i.e. static chambers, 2) quantify annual Nâ‚‚O emission budgets and 3) determine the effect of farm management including pasture renewal on Nâ‚‚O emissions. The findings of this thesis show that EC provided a realistic picture of the Nâ‚‚O exchange at paddock scales. This means EC data identified cattle grazing, land history, farm management, soil moisture and temperature as the main factors controlling Nâ‚‚O exchange throughout the year. Interestingly, using one EC system for measurements across adjacent but differently managed paddocks also allowed to compare the effect of different pasture management scenarios on Nâ‚‚O emissions. This will help researchers to test different mitigation options more easily in the future, ideally, to reduce Nâ‚‚O emissions and avoid further atmospheric warming. This thesis advances our understanding of the Nâ‚‚O exchange process from intensively grazed land as well as it shows how limited this knowledge still is. Micrometeorological Nâ‚‚O flux measurements will have to be used more frequently in the future to provide researchers with answers in the face of a rapidly changing climate on earth.
Type
Thesis
Type of thesis
Series
Citation
Wecking, A. R. (2021). Paddock scale nitrous oxide emissions from intensively grazed pasture: Quantification and mitigation (Thesis, Doctor of Philosophy (PhD)). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/14089
Date
2021
Publisher
The University of Waikato
Rights
All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.