Sharp generalization error bounds for randomly-projected classifiers

dc.contributor.authorDurrant, Robert J.
dc.contributor.authorKabán, Ata
dc.contributor.editorDasgupta, S
dc.contributor.editorMcAllester, D
dc.coverage.spatialConference held at Atlanta, USA
dc.date.accessioned2014-12-10T00:38:16Z
dc.date.available2013-06-16
dc.date.available2014-12-10T00:38:16Z
dc.date.issued2013
dc.description.abstractWe derive sharp bounds on the generalization error of a generic linear classifier trained by empirical risk minimization on randomly projected data. We make no restrictive assumptions (such as sparsity or separability) on the data: Instead we use the fact that, in a classification setting, the question of interest is really ‘what is the effect of random projection on the predicted class labels?’ and we therefore derive the exact probability of ‘label flipping’ under Gaussian random projection in order to quantify this effect precisely in our bounds .
dc.format.extent693 - 701 (9)
dc.format.mimetypeapplication/pdf
dc.identifier.citationDurrant, R. J., & Kaban, A. (2013). Sharp generalization error bounds for randomly-projected classifiers. In S. Dasgupta & D. McAllester (Eds.), Proceedings of the Thirtieth International Conference on Machine Learning, Atlanta, USA(Vol. JMLR Workshop and Conference Proceedings, Volume 28, p. 693).en
dc.identifier.issn1533-7928
dc.identifier.urihttps://hdl.handle.net/10289/8941
dc.language.isoen
dc.publisherJMLR
dc.relation.isPartOfProceedings of the Thirtieth International Conference on Machine Learning
dc.relation.urihttp://jmlr.org/proceedings/papers/v28/durrant13.pdf
dc.rightsThis is an author’s accepted version of a paper published in the Proceedings of The 30th International Conference on Machine Learning. © 2013 The Authors.
dc.subjectMachine learning
dc.titleSharp generalization error bounds for randomly-projected classifiers
dc.typeConference Contribution
dspace.entity.typePublication
pubs.begin-page693
pubs.begin-page701
pubs.end-page701en_NZ
pubs.finish-date2013-06-21
pubs.start-date2013-06-16
pubs.volumeJMLR Workshop and Conference Proceedings, Volume 28

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ICML_Flip_2013.pdf
Size:
244.79 KB
Format:
Adobe Portable Document Format
Description:
Submitted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deposit Agreement.txt
Size:
193 B
Format:
Unknown data format
Description: