Numerical performance comparison of different tube cross-sections for heat recovery from particle-laden exhaust gas streams

dc.contributor.authorWalmsley, Timothy Gordon
dc.contributor.authorWalmsley, Michael R.W.
dc.contributor.authorAtkins, Martin John
dc.contributor.authorNeale, James R.
dc.coverage.spatialPrague,Czech Republic
dc.date.accessioned2015-01-11T22:50:10Z
dc.date.available2012-08-27
dc.date.available2015-01-11T22:50:10Z
dc.date.issued2012-08-27
dc.description.abstractHeat recovery from exhaust gas streams is applicable to a wide variety of industries. However, high heat transfer resistance of gases and the presence of entrained particulate matter that readily fouls limits industry uptake of current heat recovery technology. Improvements to standard heat exchanger designs are needed. In this study Computational Fluid Dynamics (CFD) is used to investigate the effect of ten different tube cross-sections on heat transfer resistance, gas flow resistance and foulability. The average wall shear stress around the shape is used to predict foulability and an estimated asymptotic fouling resistance is used to calculate an equivalent fouled Coulburn j factor, jf. CFD results show the best tube for exhaust heat recovery is an elliptical tube closely followed by the flattened round tube. The ellipse shape produced fouled Coulburn j factor, jf values, expressed as a ratio of tube bank friction factor f, over 100% higher than that of standard round tube. A flattened round tube is also promising, given enough spacing between the tubes, and may be the practical economic optimum.
dc.format.extent1351-1364
dc.format.mimetypeapplication/pdf
dc.identifier.citationWalmsley, T. G., Walmsley, M. R. W., Atkins, M. J., Hoffman-Vocke, J., & Neale, J. R. (2012). Numerical performance comparison of different tube cross–sections for heat recovery from particle-laden exhaust gas streams. Procedia Engineering, 42, 1351-1364.
dc.identifier.isbn9781627486125
dc.identifier.urihttps://hdl.handle.net/10289/9042
dc.language.isoen
dc.publisherElsevier Procedia
dc.relation.isPartOfChemical and Process Engineering, International Congress. 20th 2012 (CHISA 2012) (3 PARTS)
dc.source20th International Congress of Chemical and Process Engineering
dc.titleNumerical performance comparison of different tube cross-sections for heat recovery from particle-laden exhaust gas streams
dc.typeConference Contribution
dspace.entity.typePublication
pubs.begin-page1351en_NZ
pubs.end-page1364en_NZ
pubs.finish-date2012-08-29
pubs.place-of-publicationUSA
pubs.start-date2012-08-25
pubs.volumeProcedia Engineering Volume 42

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CHISA'12 - Numerical performance comparison of different tube cross-sections for heat recovery from particle-laden exhaust gas streams - Aug 2012.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
Supplementary material

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deposit Agreement.txt
Size:
193 B
Format:
Unknown data format
Description: