A K-fold averaging cross-validation procedure

dc.contributor.authorJung, Yoonsuh
dc.contributor.authorHu, Jianhua
dc.date.accessioned2015-03-03T02:27:41Z
dc.date.available2015-02-26
dc.date.available2015-03-03T02:27:41Z
dc.date.issued2015-02-26
dc.description.abstractCross-validation (CV) type of methods have been widely used to facilitate model estimation and variable selection. In this work, we suggest a new K-fold CV procedure to select a candidate ‘optimal’ model from each hold-out fold and average the K candidate ‘optimal’ models to obtain the ultimate model. Due to the averaging effect, the variance of the proposed estimates can be significantly reduced. This new procedure results in more stable and efficient parameter estimation than the classical K-fold CV procedure. In addition, we show the asymptotic equivalence between the proposed and classical CV procedures in the linear regression setting. We also demonstrate the broad applicability of the proposed procedure via two examples of parameter sparsity regularisation and quantile smoothing splines modelling. We illustrate the promise of the proposed method through simulations and a real data example.
dc.format.mimetypeapplication/pdf
dc.identifier.citationJung, Y., & Hu, J. (2015). A K-fold averaging cross-validation procedure. Journal of Nonparametric Statistics. http://doi.org/10.1080/10485252.2015.1010532en
dc.identifier.doi10.1080/10485252.2015.1010532
dc.identifier.issn1048-5252
dc.identifier.urihttps://hdl.handle.net/10289/9232
dc.language.isoen
dc.publisherTaylor and Francis
dc.relation.isPartOfJournal of Nonparametric Statistics
dc.relation.urihttp://www.tandfonline.com/doi/full/10.1080/10485252.2015.1010532#.VPUZN3yUdrO
dc.rights© 2015 Taylor & Francis
dc.titleA K-fold averaging cross-validation procedure
dc.typeJournal Article
dspace.entity.typePublication
pubs.begin-page167en_NZ
pubs.end-page179en_NZ
pubs.issue2en_NZ
pubs.publication-statusPublished
pubs.volume27en_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jung & Hu 2014.pdf
Size:
172.75 KB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deposit Agreement.txt
Size:
193 B
Format:
Unknown data format
Description: