Show simple item record  

dc.contributor.authorKalnins, Ernie G.
dc.contributor.authorKress, Jonathan M.
dc.contributor.authorMiller, W., Jr.
dc.date.accessioned2008-10-29T02:48:30Z
dc.date.available2008-10-29T02:48:30Z
dc.date.issued2003-12
dc.identifier.citationKalnins, E.G., Kress, J.M. & Miller, W., Jr. (2003). Superintegrable systems in Darboux spaces. Journal of Mathematical Physics, 44, 5811.en_US
dc.identifier.issn0022-2488
dc.identifier.urihttps://hdl.handle.net/10289/1185
dc.description.abstractAlmost all research on superintegrable potentials concerns spaces of constant curvature. In this paper we find by exhaustive calculation, all superintegrable potentials in the four Darboux spaces of revolution that have at least two integrals of motion quadratic in the momenta, in addition to the Hamiltonian. These are two-dimensional spaces of nonconstant curvature. It turns out that all of these potentials are equivalent to superintegrable potentials in complex Euclidean 2-space or on the complex 2-sphere, via "coupling constant metamorphosis" (or equivalently, via Stäckel multiplier transformations). We present a table of the results.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherAmerican Institute of Physicsen_NZ
dc.relation.urihttp://link.aip.org/link/?JMAPAQ/44/5811/1en_US
dc.rightsCopyright 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Mathematical Physics and may be found at http://jmp.aip.org/jmp/top.jspen_US
dc.subjectMathematicsen_US
dc.subjectpartial differential equationsen_US
dc.titleSuperintegrable systems in Darboux spacesen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1063/1.1619580en_US
dc.relation.isPartOfJournal of Mathematical Physicsen_NZ
pubs.begin-page5811en_NZ
pubs.elements-id30063
pubs.end-page5848en_NZ
pubs.issue12en_NZ
pubs.volume44en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record