Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Separation of variables for the Hamilton-Jacobi equation on complex projective spaces

      Boyer, C.P.; Kalnins, Ernie G.; Winternitz, P.
      Thumbnail
      Files
      out.pdf
      Published version, 1.989Mb
      DOI
       10.1137/0516006
      Find in your library  
      Citation
      Export citation
      Boyer, C. P., Kalnins, E. G., & Winternitz, P. (1985). Separation of variables for the Hamilton-Jacobi equation on complex projective spaces. SIAM Journal on Mathematical Analysis, 16(1), 93–109. https://doi.org/10.1137/0516006
      Permanent Research Commons link: https://hdl.handle.net/10289/12356
      Abstract
      The additive separation of variables in the Hamilton-Jacobi equation and the multiplicative separation of variables in the Laplace-Beltrami equation are studied for the complex projective space C Pⁿ considered as a Riemannian Einstein space with the standard Fubini-Study metric. The isometry group of C Pⁿ is SU(ⁿ + 1) and its Cartan subgroup is used to generate n ignorable variables (variables not figuring in the metric tensor). A one-to-one correspondence is established between separable coordinate systems on S and separable systems with n ignorable variables on C P. The separable coordinates in C Pⁿ are characterized by 2n integrals of motion in involution: n of them are elements of the Cartan subalgebra of SU(n + 1) and the remaining n are linear combinations of the Casimir operators of n(n + 1)/2 different su(2) subalgebras of su(n + 1). Each system of 2n integrals of motion in involution, and hence each separable system of coordinates on CPⁿ, thus provides a completely integrable Hamiltonian system. For n= 2 it is shown that only two separable systems on CP² exist, both nonorthogonal with two ignorable variables, coming from spherical and elliptic coordinates on S², respectively.
      Date
      1985
      Type
      Journal Article
      Publisher
      SIAM Publication
      Rights
      Copyright © 1985 Society for Industrial and Applied Mathematics
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      80
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement