Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Graph convolutional LSTM model for traffic delay prediction with uncertainty

      Townsend, Dale
      Thumbnail
      Files
      thesis.pdf
      7.307Mb
      Citation
      Export citation
      Townsend, D. (2021). Graph Convolutional LSTM model for traffic delay prediction with uncertainty (Thesis, Master of Science (Research) (MSc(Research))). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/14575
      Permanent Research Commons link: https://hdl.handle.net/10289/14575
      Abstract
      Traffic flow in an urban environment exhibits a complex spatio-temporal in- teraction. The propogation of traffic flow through a transportation network depends on a number of factors, including the structure of the network and the time of day. Current analysis of this data by road controlling authorities is of- ten simplified and lacks a detailed understanding of how traffic moves through the network. A deep learning model which models both the spatial and tempo- ral interactions present in the data is able to capture complex patterns present in the data and allows for a more detailed understanding of traffic flow. A GC- LSTM model is explored for Hamilton City to predict traffic delay. It is found to have improved prediction accuracy over a standard LSTM by incorporating the spatial structure of the Hamilton road network. Additionally, Bayesian layers are integrated into the model to obtain a probability distribution over each prediction. By quantifying the uncertainty over each prediction, the de- cision making process based on the analysis can be carried out with a higher degree of confidence than a single point prediction from the model.
      Date
      2021
      Type
      Thesis
      Degree Name
      Master of Science (Research) (MSc(Research))
      Supervisors
      Joshi, Chaitanya
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Masters Degree Theses [2381]
      Show full item record  

      Usage

      Downloads, last 12 months
      102
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement