Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Remote sensing of wetlands in the Lake Whangape catchment, Waikato, New Zealand.

      Pathayala Ralalage, Sumedha Kusum Amarasena
      Thumbnail
      Files
      thesis.pdf
      5.305Mb
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/14756
      Abstract
      Wetlands are among the world's most valuable ecosystems. They provide numerous ecological and socio-economic benefits. However, wetlands continue to disappear due to the increasing demand for wetland resources. In New Zealand, more than 90% of the original extent of wetlands has been lost since the mid-eighteenth century. Therefore, legislation has been identified for the protection of wetlands as a matter of national importance.

      Geographic Information System (GIS) and Remote Sensing (RS) techniques have proven helpful for mapping and monitoring wetland resources. This study aims to understand how RStechniques can classify wetlands in the Lake Whangape catchment, Waikato. The parameters that can be extracted from available data and their effectiveness in the classification process are also studied.

      Four types of input data are collectively employed in the study. The data types are optical RS data, Synthetic Aperture Radar (SAR) data, a Digital Elevation Model (DEM), and wetland polygons provided by the Waikato Regional Council (WRC). All the steps including, accessing satellite scenes and data processing were performed within Google Earth Engine (GEE) computing platform using JavaScript language. The classification process for this study includes feature extraction, feature selection, model training, classification, and validation. Finally, the accuracy of the classification results is checked visually and statistically.

      The classification was carried out in two stages. In Stage one, open water, wetland, and non-wetland areas are classified (simple classification). The combined wetlands class is separated into marsh and swamp in the second stage (detailed classification). Based on the results, the Topographic Position Index (TPI) is the most influential parameter in identifying wetlands, while the Modified Normalized Water Index (MNDWI) successfully identifies open water. The overall accuracy reached 91% at the simple classification stage. However, the detailed classification results received comparatively low classification accuracies (the overall accuracy is 76%).
      Date
      2021
      Type
      Thesis
      Degree Name
      Master of Social Sciences (MSocSc)
      Supervisors
      Brabyn, Lars
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Masters Degree Theses [2381]
      Show full item record  

      Usage

      Downloads, last 12 months
      204
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement