Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Higher Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Higher Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Rotationally moulded polyethylene reinforced with alkali treated hemp fibre

      Oliveira, Maria A.S.
      Thumbnail
      Files
      thesis.pdf
      9.307Mb
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/14984
      Abstract
      The increasing demand for rotationally moulded products highlights the necessity to develop cost-effective and sustainable materials to expand the application of such products. Natural fibres are a potential reinforcement for rotationally moulded products due to their high specific strength and stiffness. However, few attempts have been reported using natural fibres in rotational moulding. The most-reported challenges in incorporating natural fibres in this process are poor adhesion between fibre and matrix, fibre agglomeration and porosity, which require improvement. Accordingly, this research proposes methods to address these issues to increase rotationally moulded composites' tensile properties.

      Initially, hemp fibres were alkali-treated to improve the fibre-matrix interface along with the coupling agent, maleic anhydride polyethylene (MAPE). The effect of alkali treatment on hemp fibre was assessed by single fibre tensile testing, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA).

      Subsequently, materials were melt-compounded and chopped into pellets of different sizes to produce rotationally moulded composites with increased fibre length and uniform fibre distribution. The porosity within the final composites was assessed using optical microscopy, Archimedes density tests and micro-CT. To mitigate porosity within these composites, additives including mineral oil, stearic acid and recycled carbon fibre were tested. Fibre orientation in optical microscopy cross-sectional images of composites produced with pellets of aspect ratio larger than 1 were assessed using ImageJ.

      The results showed that the alkali treatment removed the non-cellulosic components from hemp fibre, improving fibre separation, fibre resistance to thermal degradation, and fibre-matrix adhesion along with MAPE. In addition, composite pellets of up to 1.5 mm size were found suitable to produce rotationally moulded composites with increased fibre length and moderate porosity, with the addition of 3 wt.% of stearic acid. It was also observed that using pellets with an aspect ratio higher than 1 improved fibre orientation parallel to the composite mould wall, resulting in higher tensile properties than pure polyethylene.

      Finally, the addition of recycled carbon fibre improved the melting of composite pellets of hemp-PE which reduced the void size in the final hybrid composites. This reduction in composite porosity, combined with the high stiffness of RCF, resulted in higher tensile properties with increasing RCF content. In conclusion, this research showed innovative methods and materials to produce reinforced rotationally moulded polyethylene composites with superior strength and stiffness, and moderate porosity.
      Date
      2022
      Type
      Thesis
      Degree Name
      Doctor of Philosophy (PhD)
      Supervisors
      Pickering, Kim L.
      Lin, Richard J.T.
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Higher Degree Theses [1762]
      Show full item record  

      Usage

      Downloads, last 12 months
      88
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement