Show simple item record  

dc.contributor.authorTaft, Joseph M.en_NZ
dc.contributor.authorWeber, Cédric R.en_NZ
dc.contributor.authorGao, Beichenen_NZ
dc.contributor.authorEhling, Roy A.en_NZ
dc.contributor.authorHan, Jiamien_NZ
dc.contributor.authorFrei, Lesteren_NZ
dc.contributor.authorMetcalfe, Sean W.en_NZ
dc.contributor.authorOverath, Max D.en_NZ
dc.contributor.authorYermanos, Alexanderen_NZ
dc.contributor.authorKelton, Williamen_NZ
dc.contributor.authorReddy, Sai T.en_NZ
dc.coverage.spatialUnited Statesen_NZ
dc.date.accessioned2022-10-13T06:58:09Z
dc.date.available2022-10-13T06:58:09Z
dc.date.issued2022en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/15247
dc.description.abstractThe continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoengen_NZ
dc.rights© 2022 The Author(s). Published by Elsevier Inc.
dc.subjectartificial intelligenceen_NZ
dc.subjectdeep learningen_NZ
dc.subjectdeep sequencingen_NZ
dc.subjectdirected evolutionen_NZ
dc.subjectmachine learningen_NZ
dc.subjectprotein engineeringen_NZ
dc.subjectviral escapeen_NZ
dc.subjectyeast displayen_NZ
dc.titleDeep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain.en_NZ
dc.typeJournal Article
dc.identifier.doi10.1016/j.cell.2022.08.024en_NZ
dc.relation.isPartOfCellen_NZ
pubs.elements-id298763
pubs.publication-statusPublished onlineen_NZ
dc.identifier.eissn1097-4172en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record