dc.contributor.author | Lyness, J.N. | |
dc.contributor.author | Joe, Stephen | |
dc.date.accessioned | 2009-02-10T23:01:14Z | |
dc.date.available | 2009-02-10T23:01:14Z | |
dc.date.issued | 2003 | |
dc.identifier.citation | Lyness, J.N. & Joe, Stephen(2003). The Number of Lattice Rules of Specified Upper Class and Rank. Bit Numerical Mathematics, 43(2), 413-426. | en |
dc.identifier.uri | https://hdl.handle.net/10289/2003 | |
dc.description.abstract | The upper class of a lattice rule is a convenient entity for classification and other purposes. The rank of a lattice rule is a basic characteristic, also used for classification. By introducing a rank proportionality factor and obtaining certain recurrence relations, we show how many lattice rules of each rank exist in any prime upper class. The Sylow p-decomposition may be used to obtain corresponding results for any upper class. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | Springer Netherlands | en |
dc.relation.uri | http://www.springerlink.com/content/h0018j5661g52463/?p=4e452a3790584091b9121432e00c5307&pi=11 | en |
dc.rights | This is an author’s version of an article published in the journal: BIT Numerical Mathematics. © Springer Netherlands. The original publication is available at www.springerlink.com. | en |
dc.subject | mathematics | en |
dc.subject | lattice rules | en |
dc.subject | upper class | en |
dc.subject | rank of lattice rule | en |
dc.subject | sylow p- decomposition | en |
dc.title | The Number of Lattice Rules of Specified Upper Class and Rank | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1023/A:1026048021823 | en |
dc.relation.isPartOf | BIT Numerical Mathematics | en_NZ |
pubs.begin-page | 413 | en_NZ |
pubs.edition | June | en_NZ |
pubs.elements-id | 29447 | |
pubs.end-page | 426 | en_NZ |
pubs.issue | 2 | en_NZ |
pubs.volume | 43 | en_NZ |