Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Effective classifiers for detecting objects

      Mayo, Michael
      Thumbnail
      Files
      Effective classifiers for Detecting objects.pdf
      1.684Mb
      Link
       www-ist.massey.ac.nz
      Citation
      Export citation
      Mayo M. (2007). Effective classifiers for detecting objects. In Proceedings of the Fourth International Conference on Computational Intelligence, Robotics, and Autonomous Systems (CIRAS ’07), Palmerston North, New Zealand.
      Permanent Research Commons link: https://hdl.handle.net/10289/2171
      Abstract
      Several state-of-the-art machine learning classifiers are compared for the purposes of object detection in complex images, using global image features derived from the Ohta color space and Local Binary Patterns. Image complexity in this sense refers to the degree to which the target objects are occluded and/or non-dominant (i.e. not in the foreground) in the image, and also the degree to which the images are cluttered with non-target objects. The results indicate that a voting ensemble of Support Vector Machines, Random Forests, and Boosted Decision Trees provide the best performance with AUC values of up to 0.92 and Equal Error Rate accuracies of up to 85.7% in stratified 10-fold cross validation experiments on the GRAZ02 complex image dataset.
      Date
      2007
      Type
      Conference Contribution
      Publisher
      Massey University
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      41
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement