Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Best-first Decision Tree Learning

      Shi, Haijian
      Thumbnail
      Files
      thesis.pdf
      789.8Kb
      Citation
      Export citation
      Shi, H. (2007). Best-first Decision Tree Learning (Thesis, Master of Science (MSc)). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/2317
      Permanent Research Commons link: https://hdl.handle.net/10289/2317
      Abstract
      In best-first top-down induction of decision trees, the best split is added in each step (e.g. the split that maximally reduces the Gini index). This is in contrast to the standard depth-first traversal of a tree. The resulting tree will be the same, just how it is built is different. The objective of this project is to investigate whether it is possible to determine an appropriate tree size on practical datasets by combining best-first decision tree growth with cross-validation-based selection of the number of expansions that are performed. Pre-pruning, post-pruning, CART-pruning can be performed this way to compare.
      Date
      2007
      Type
      Thesis
      Degree Name
      Master of Science (MSc)
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Masters Degree Theses [2381]
      Show full item record  

      Usage

      Downloads, last 12 months
      557
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement