Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Design of lightweigh electric vehicles

      de Fluiter, Travis
      Thumbnail
      Files
      thesis.pdf
      3.794Mb
      Citation
      Export citation
      de Fluiter, T. (2008). Design of lightweigh electric vehicles (Thesis, Master of Engineering (ME)). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/2438
      Permanent Research Commons link: https://hdl.handle.net/10289/2438
      Abstract
      The design and manufacture of lightweight electric vehicles is becoming increasingly important with the rising cost of petrol, and the effects emissions from petrol powered vehicles are having on our environment. The University of

      Waikato and HybridAuto's Ultracommuter electric vehicle was designed, manufactured, and tested. The vehicle has been driven over 1800km with only a small reliability issue, indicating that the Ultracommuter was well designed and could potentially be manufactured as a solution to ongoing transportation issues.

      The use of titanium aluminide components in the automotive industry was researched. While it only has half the density of alloy steel, titanium aluminides have the same strength and stiffness as steel, along with good corrosion resistance, making them suitable as a lightweight replacement for steel components. Automotive applications identified that could benefit from the use of TiAl include brake callipers, brake rotors and electric motor components.
      Date
      2008
      Type
      Thesis
      Degree Name
      Master of Engineering (ME)
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Masters Degree Theses [2381]
      Show full item record  

      Usage

      Downloads, last 12 months
      85
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement